中文字幕 日韩 人妻 无码_亚洲无码电影_亚洲精品成人网站在线观看_久久99精品国产99久久6不卡,午夜亚洲国产理论片二级港台二级_黑人强伦姧人妻日韩HD_国产精品资源在线一区_大胸好大被揉捏好爽在线观看免费_全免费观看中文字幕三级_久久精品国产亚洲av瑜伽_亚洲中文字幕欧美岛国_又爽又黄无遮挡免费视频黄_国产成人高清在线播放_日韩一区中文无码 ,国产精品无码一级免费看A级毛激情_国产精品无码一区免费看_日韩亚洲av人人夜夜澡人人爽_亚洲最新av片不卡无码久久_中文字幕人妻第一区_国产欧美综合在线观看_天天av天天爽无码中文_中文字幕久久久久久久免费蜜桃麻豆_91中文字幕午夜福利亚洲天堂成人国产三级_欧美亚洲精品一级毛淫片_国产在线视频一区二区高清乱码99

學(xué)術(shù)動(dòng)態(tài)

學(xué)術(shù)動(dòng)態(tài)

學(xué)術(shù)活動(dòng)

講座通知: EM meets Boosting inbig genomic data analysis

作者: 編輯: 發(fā)布時(shí)間:2016-12-24

題目: EM meets Boosting inbig genomic data analysis

主講人:楊燦教授 香港浸會(huì)大學(xué)統(tǒng)計(jì)系

時(shí)間:1227號(hào)(周二),上午10:30-11:20

地點(diǎn):bwin必贏唯一官網(wǎng)313會(huì)議室

歡迎廣大師生參加!



報(bào)告內(nèi)容

Recent internationalprojects, such as the Encyclopedia of DNA Elements (ENCODE) project, theRoadmap project and the Genotype-Tissue Expression (GTEx) project, havegenerated vast amounts of genomic annotation data, e.g., epigenome andtranscriptome. There is great demanding of effective statistical approaches tointegrate genomic annotations with the results from genome-wide associationstudies. In this talk, we introduce a statistical framework, named IMAC, forintegratingmultipleannotationstocharacterizefunctional roles of genetic variants that underlie human complex phenotypes.For a given phenotype, IMAC can adaptively incorporates relevant annotations forprioritization of genetic risk variants, allowing nonlinear effects among theseannotations, such as interaction effects between genomic features.Specifically, we assume that the prior probability of a variant associated withthe phenotype is a function of its annotations F(X), where X is thecollection of the annotation status and F(X)is an ensemble of decision trees, i.e., F(X)= \sum_kf_k(X) and f_k(X) is a shallow decision tree. We havedeveloped an efficient EM-Boosting algorithm for model fitting, where a shallowdecision tree grows in a gradient-Boosting manner (Friedman J. 2001) at eachEM-iteration. Our framework inherits the nice property of gradient boostedtrees: (1) The gradient accent property of the Boosting algorithm naturallyguarantees the convergence of our EM-Boosting algorithm. (2) Based on thefitted ensemble \hat{F}(X), we areable to rank the importance of annotations, measure the interaction amongannotations and visualize the model via partial plots (Friedman J. 2005). UsingIMAC, we performed integrative analysis of genome-wide association studies onhuman complex phenotypes and genome-wide annotation resources, e.g., Roadmapepigenome. The analysis results revealed interesting regulatory patterns ofrisk variants. These findings deepen our understanding of genetic architecturesof complex phenotypes. Thestatistical framework developed here is also broadly applicable to many otherareas for integrative analysis of rich data sets.


個(gè)人簡(jiǎn)介

楊燦教授于2011年畢業(yè)于香港科技大學(xué)電子信息工程系,獲得博士學(xué)位。2011-2012耶魯大學(xué)做博士后研究。2012-2014年在耶魯大學(xué)做associate researchscientist。2014年起,其進(jìn)入香港浸會(huì)大學(xué)數(shù)學(xué)系做助理教授。2012年他獲得了the winner of the 2012Hong Kong Young Scientist稱號(hào)。其研究興趣主要集中在statisticalgenomics, bioinformatics, pattern recognition and machine learning.


信息管理與電子商務(wù)系

2016.12.23


上高县| 郧西县| 辽阳市| 社会| 积石山| 莫力| 德兴市| 张家港市| 岳普湖县| 肇州县| 平谷区| 六安市| 双城市| 德安县| 健康| 桂平市| 彭州市| 平定县| 东阳市| 康马县| 溧水县| 锡林浩特市| 上饶市| 阿瓦提县| 汤原县| 大足县| 车险| 林口县| 奉化市| 莱西市| 邵东县| 龙陵县| 麦盖提县| 和平区| 探索| 甘泉县| 罗江县| 贵溪市| 嘉荫县| 秦皇岛市| 区。|