中文字幕 日韩 人妻 无码_亚洲无码电影_亚洲精品成人网站在线观看_久久99精品国产99久久6不卡,午夜亚洲国产理论片二级港台二级_黑人强伦姧人妻日韩HD_国产精品资源在线一区_大胸好大被揉捏好爽在线观看免费_全免费观看中文字幕三级_久久精品国产亚洲av瑜伽_亚洲中文字幕欧美岛国_又爽又黄无遮挡免费视频黄_国产成人高清在线播放_日韩一区中文无码 ,国产精品无码一级免费看A级毛激情_国产精品无码一区免费看_日韩亚洲av人人夜夜澡人人爽_亚洲最新av片不卡无码久久_中文字幕人妻第一区_国产欧美综合在线观看_天天av天天爽无码中文_中文字幕久久久久久久免费蜜桃麻豆_91中文字幕午夜福利亚洲天堂成人国产三级_欧美亚洲精品一级毛淫片_国产在线视频一区二区高清乱码99

學(xué)術(shù)動態(tài)

學(xué)術(shù)動態(tài)

學(xué)術(shù)活動

題目:Data-Driven Scalable E-commerce Transportation Network Design with Unknown Flow Response

作者: 編輯:賈峰菊 發(fā)布時間:2021-11-10

題目: Data-Driven Scalable E-commerce Transportation Network Design with Unknown Flow Response

主講人:Shuyu Chen,Ph.D

時間:11月12日(周五)8:30-10:30

地點:bwin必贏唯一官網(wǎng)302室

歡迎廣大師生參加!


Abstract:

Motivated by our experience with a large online marketplace, we study an e-commerce middle-mile transportation network design problem. A salient feature in this problem is decentralized decision-making.  While the middle-mile manager decides the network configuration on a weekly or bi-weekly basis, the real-time flows of millions of packages on any given network configuration (which we call the flow response) are controlled by a fulfillment policy employed by a different decision entity. Thus, we face a fixed-cost network design problem with unknown flow response. To meet this challenge, we first develop a predictive model for the unknown response leveraging machine learning techniques and observed shipment data. We then embed the predictive model to the original network design problem and characterize this transformed problem as a c-supermodular minimization problem. We develop a linear time algorithm with an approximation guarantee that depends on c. In a numerical study, we demonstrate that this algorithm is effective and scalable.


主講人介紹:

Shuyu Chen (陳舒予) is a Ph.D. Candidate in the Operations Management department of the Fuqua School of Business at Duke University. His research focuses on developing and analyzing approximation methods for large-scale stochastic optimization problems, integrating historical data and machine learning methods, with an emphasis on applications in network design and inventory management.


阿瓦提县| 安西县| 洪湖市| 甘德县| 东平县| 乌拉特前旗| 桐柏县| 水城县| 玛多县| 邵阳市| 翁牛特旗| 双鸭山市| 同江市| 错那县| 临沭县| 新晃| 广德县| 体育| 六枝特区| 洪湖市| 汤原县| 东平县| 吴旗县| 黎城县| 革吉县| 甘泉县| 高淳县| 理塘县| 湖南省| 巨野县| 华容县| 阳山县| 咸宁市| 邵阳市| 平邑县| 平潭县| 静乐县| 南涧| 景洪市| 尤溪县| 疏勒县|